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Chapter 1. Introduction

1.1 Problem I)escriptrion

"his thesis deals with the time-optimal control of a tendon ann system. The tendon ann system

consists of a rigid link attached to a base plate through a three degree-of-freedom joint thus affording the

arm rotati(njal freedom in three axes Movement of the ann is made possible I-y four tendons: one end

of each tendon is attached to the toI of tie arm and the other end is wound on a motor shaft located

under the base plate. The design of the tendon attachments is such that through the interaction of the

tbur motors and tendons, and by controlling the current input (or torque Output I (of the motors, control of

the movement of the arm in three axes is possible. Section 2.1 contains a more detailed dccription of the

tendon arm system, and figure 2-1 shows a schematic diagram of it. The tendon arm system is designed by

John Hollerbach and Danny Hillis of the M.I.T. Artificial Intelligence ILaboratorv.

We are interested in designing a controller to move the arm from an initial position to any specified

final position. Time-optimal control is chosen because

i. it achieves the desired motion in minimum time - this is desirable because the faster it can move, the

more motion tasks per unit time could be completed this way, and

2. it requires few words of computer memory to represent the optimal solution - traditionally, time-

optimal solution is associated with bang-bang control, hence the optimal solution is completely

specified by the switching times.

These are the motivations for choosing time-optimal control, namely, it yields a rapid-moving system

which is implementable.

The second point mentioned in the last paragraph is only valid if the problem is nonsingular. In

the presence of singularity, the time-optimal solution need not be bang-bang. Our problem is, in fact,

singular, but the form of the singular arcs is such that the control signals can be approximated very closely
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by straight line segments. hence the storage requirements for such a control is quite low also (about 5

integer words per trajectory).

Since our system equations are highly nonlinear and complicated, it is not possible to express the

optimal solution in feedback form. Thus, in addition to this opcn-loop control, some sort of closed-loop

control law is required to correct for any disturbances. The overall control sceicme will consist of two

phases : an initial phase during vMhich open-loop time-optimal control is app'ied. and a second phase

which is feedback regulation at the final position.

Although time-optimal control has been applied to manipulators (Kahn[l), it does not shed much

light on our problem because the tendon arm is different from conventional manipulator design. The only

reference that is available on tendon arm dynamics is Riemenschneider et at [21 but the paper deals with a

one degree-of-freedom arm which is much simpler than the three degree-of- freedom arm studied herein.

1.2 Thesis Outline

This thesis is organized into seven Chapters:

Chapter I provides an introduction to the problem under study.

Chapter 2 describes the physical tendon arm system and develops a mathematical model describing the

system. A simplified reduced-order model is also obtained, and the responses of the two are com-

pared.

Chapter 3 first states the time-optimal control problem and presents necessary conditions for the optimal

solution from Pontryagin's Minimum Principle. These are then applied to the reduced-order model

of the tendon arm system.

Chapter 4 presents the conjugate gradient method and describes an iterative procedure for solving our

time-optimal problem. Approximation for the time-optimal solution is also proposed.

Chapter 5 motivates the need for a closed-loop feedback control law at the final position, and presents the

linear regulator approach for designing the feedback law.



Chapter 6 describes the implementation of the overall control scheme.

Chapter 7 is a summary of he results jf the thesis and describes areas of further work.

- F

-a!



Chapter 2. Modeling of the Tendon Arm System

In order to study and develop a :ontrol strategy for the tendon arm system, we must have a mathe-

matical model of it. In this Chapter, the physical system is first described, equations describing the system

dynamics are then decoped, and a reduced-order model is obtained by ignoring the third degree-of-

freedom of the arm.

LI A Description of (he Tendon Arm System

ihc schematic diagram of the tetdon arm system is shown in figure 2-1. It is a cylindrical rod, known

as the arm, attached at one end to a oase plate via a three degree-of-freedom "joint". Figure 2-2 shows

the "joint" in greater detail. The outcr rectangular block, together with the inner member, can be rotated

about the Y - Y axis. The inner member can be independendy rotated about the X - X axis. The

cylindrical part of the inner member can be rotated about the Z - Z axis, i.e. the longitudinal axis of the

cylinder. Potentiometers are mounted as shown in the diagram to measure the three angles of rotation.

This construction of the "joint" lends itself to a very natural way of defining the position of the arm

in terms of the three angles 0, 4, and 0,, which are measured directly by the potentiometers, as shown

in figure 2-3. This coordinate system will be used throughout this thesis to describe the arm. Another

coordinate system, described by the angles a, ,P, and 0, is sometimes used. This is shown in figure 2-4.

At the upper half of the cylindrical rod, there are points of"insertion" (attachment) for four tendons,

two at one height, and the other two at another. Each tendon is wrapped around the arm through a certain

angle before it breaks off from the surface of the arm (see figure 2-5). The other end of the tendon passes

through a pulley on the base plate and is wrapped round a threaded cylinder mounted on the shaft of a

motor under the base plate. As the motor rotates, the tendon will be wrapped or unwrapped from the

motor shaft thereby causing a shortening or lengthening of the tendon between the motor and the arm.

Through the interaction of the four motors and tendons, the arm can be moved from one position to

4



Figure 2-1. Schematic diagram of the tendon arm system

another.

2.2 Equations of Motion

2.2.1 Coordinate Systems and Coordinate Transformation

We choose as our fixed coordinate system one that has its origin at the "joint" with the x-axis along
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Figure 2-3. Angles defining the position of the Figure 2-4. Another set of angles that defines
arm the position of the arm

If P denotes the coordinates of a point in the fixed coordinate system, to refer it to the moving

coordinate system, we need to perform the following transformations:

1. a rotation through an angle 0 about the y-axis, and

2. a rotation through an angle 0 about the new z-axis, and

3. a rotation through an angle i about the new z-axis.

-P1 = s4(M) s(e) s(k)P (2.1)

where P denotes the coordinates of the point referred to the moving (primed) coordinate system, and
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Figure 2-5. Schematic diagram of thc ann showing the tendon wrapping geometry.
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[1 0 0 [cos4) 0 -sino) [CoswV Sill ) 0]

S.(0) 0 cosO sin ] SY( -- 0 1 0 , 2(0) -- sin cos tP 0

0 -sinO cosOJ sino 0 cos4 0 0 1
(2.2)

or

P, = W(O,4, b)P (2.3)

where

coscostp - sin Osin Osin V cosOsino -sin cosV' sin0cos 4sinO]

W( , k -= f-cos4sini -sinasincoso cos~coso sin4)siniO +sin0cos4cosk

cos 0 sinS -sin 0 cos 0 cos
(2.4)

2.2.2 Some Geometric Calculations

Referring to figure 2-6 which shows some parameters of the arm,

P , P2 -a , P3 0, P4 0 (2.5)

Using equation (2.3),

[acos0sin] [ -a cos / costP s sin O sin / sin V"

P = -P2 = cacos0cos ip P'3 =-P 4 = scos4sinVP-ssin~sin4)coso . (2.6)

L -asinG J -- Cos 0 sill

From now onwards, we will refer all quantities to the moving coordinate system.

Let Q, be the point at which tendon i is attached to the arm, and R he the point at which tendon i leaves

the surface of the arm. Then in order to calculate the directions in which the tendons pull on the arm, we

need the coordinates of the RJ's.
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Figure 2-6. Schematic diagram showing some parameters or the arm.

Coordinates ofR 1 andR2

Let (xi, yl, zl) denote the coordinates of R, with respect to the primed coordinate system.

From figure 2-7(a) and equation (2.6),
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MIR, _ Q1MI

R INI NIPI
implies

z, -= - a sin O - b +l asin f 2 .1

L, = RP = (zi +a sin e)2 + P 2 tan2 X] (2.12)

=QIP= (b+asinG) 2 +p2(3 -w- +tan)2 (2.13)

Similarly, the coordinates of R2 are given by,

X2-- -psin(w+ + ) (2.14)
w = -PCOS(w + X) b-aiO(2.15)
z2 = asinG+ b--(2.16)

I + -w - A)/ tan X~

L2 = R 2P2 = ((z - a sin )2 + p2 tan2] (2.1 7)

12 = Q2P2 [(b- a sin #)2-+- 2(3 - w -- tan )2)1 (2.18)

Coordinales ofR3 andR 4

Let (x3 , V, z3) be the coordinates of R3 in the primed coordinates.

From figure 2-8(a) and equation(2.6),

'= tan-- (-cos 0 sin + sin#sin 0 cos 0i
( cos 0cos 0 + sin 0 in sit

tan I(-Yta +tanosn# (2.19)1a + [ - tan O-Ftan osin O'

Define

tans'- tan 4 sinf (2.20)
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0

S(a) b)

Figure 2-. (a) Schematic of the arm looking down the z'-axis showing only tendon 3. (b)
Unwrapping tendon 3 onto a plane.

Then from equations (2.19) and (2.20),

a' = V' -0 1 (2.21)

X= cos-+ 20 (2.22)s(COs 2 0 + sin2 sin 2 O)i

X3 = -p CoO{w' + )') (2.23)
/3 = -psin(w' + V,') (2.24)

Referring to figure 2-8(b),
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f -IN N3P3
implies

x3 = -asin cosa + + a sin coD (2.25)
1 + (it - "/ - N')/ tan X'

Li = Ri = [(zj + a sin 0 cos#) 2 + p2 tan2  (2.26)

13 = QP, = (t + ;sin 0 cos 0) -1 p2( 3w X,± U1, X), (2.27)

Similarly. for R4.

4 = pcoS(W' + ') (228)
Y4 = psin(w' + W) (229)

t - a sin 4cos0 (2-30)z4 =a~i~co~ +1 + (f - -XI)/ Un X' I

L 4  = R 4P4 = (z4 - a sin 0 cosE) 2 + p2 tan2  (2.31)

14 = Q4P4 = [(t - suin 0cos9) 2 + 1 -w - X' + tan X 2  (2.32)

Coordinates of the center of gravity

Let G be the center of gravity of the arm (see figure 2-6), and let GD be the unit vector along the

direction of the gravitation field which will be assumed to be vertically down.

Expresscd in the primed coordinate system,

G= (2-33)

r sin OcosO - sinecosnin ]

GD =-,in sino €- ,into o, (2.34)

22- Coeos o

2.2.3 Resultant Torque exerted by the four Tendons about the point of rotation 0



Let f, i = 1,, 4, be the tension in tendon i, the direction ofF, will he ill lit: d Ircctnml of R1 P,.

Resultant torque acting on the arm about 0

-OR, x F, + OR2j x F, +0Oil x Fj + OR4 X IF 4 G r ug XW1

IRPIORi X R1!'1 + - -)1 R2 x RIP2 + -~- Oh o X R;P,

+ F4 R I4  X '.,P, +mgdG XdD

t T1 + f2 + kT3  (2.35)

where

T, F31 I-asn o(w+ X) - Gto~csp]+ F2 Ipsn~o~ X) + 2acoscosu1

+ F3 [P' uin~cos~sin(w' + W!) - zjs(cos~sin 0 - sin~sinocostp))

+ L ~[Pssin~cos~sin(w' + X~') + z48(COossin 0 -~ sin~sinopcosi)I

" mgd(sinouin 0 + comosin~coas') (2.35)

T2 F- 9psn i(w+ X)+ ziacosisin %61+ F2 (pasin sin(w + A) -z 2acos~sin~i

+ 3(-p sin .0cos~cos(w' + X~') - zia(coa~cou 0' + sin .osinesin 0)]

- + F4(-ps sin Oco.9cos(u' + W~) + z4 (coaOcost + sin~sinfoin 0)]

+ mgd(sin Ocosip - cooosinfain 0) (2.37)

T3  l + n)pa coosehin X + E3+ )P[sin~inecosP.' + sil - coo~i(/+,s) (2.38)

Note: Thc expressions in equations (2.36H2.38) arc derived based on the geometry of the arm as

described in section 2.2.2. vhich assumes that all the tendons are wrapped properly on the arm. In the

course of moving from onc position to another, one pair of the tendons might be completely unwrapped.

hence the expressions developed above will not be valid.

Referring to thc notations used in section 2.2.2:

if w + X~ > 3w/4, then tendons I and 2 have completely unwrapped, and

if u/ + V '> 3w/4, then tendons 3 and 4 havc completely unwrapped.
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Appendix A develops the corresponding expressions for equations (2.36H2.38) in the event of either pair

of tendons is unwrappcd. ihesc expressions are only approximations as the tendon insertion is not ideal.

2.2.4 Arm and Motor Dynamics

Eulcr's dynamical equations for the rutation of a rigid body about a point 0 are given by,

J1 4--' - (J2 - J3)fl 20 3 = TIdt
Jdf 12 - (j3 - j)fl 3fl, = T2 (2.39)

J - (J - 2 )00 2 = T 3
dt

where the subscripts 1, 2, 3 refer to the three principal axes of the rigid body. fi,, J, are the angular

velocity and the moment of inertia, respectively. of the arm along the i-axis, and T, is the external

applied torque on the body.

By making the identification of the z'-, y-. z ' -axes of the arm primed coordinate system with the

1-. 2-, 3-axes of the above, we can apply equation (2.39) to the tendon arm system, with the simplifying

assumption that

A = 2 = J. (2.40)

This assumption is valid because the contribution of the moment of inertia of the lower rectangular block

about point 0. which is asymmetrical about the z-axis, is negligible compared to that of the cylindrical

rod, which is symmetrical.

Fxpressing the fl,'s in tcrms of the three angles $, 0 and Pb, we obtain.

fl f12 = -sin ,t-+ cosOco*O (2.41)

L rgeyqi+ e J

T, 'T-1, Tj are given by equations (2.36H-2.38). The tensions F,. F2. F3, P4 in the tendo)ns ar related
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to the input currents to the motors, 1. 12, Ij,. 14, through the motor dynamics

Jm, + Bi + F KI i =,..., 4 (2.42)

where

is the angular velocity of the motor shaft,

J,, is the moment of inertia of the motor shaft.

B,, is the velocity dependent friction coefficient,

r is the radius of the cylinder mounted on the motor shaft, and

K is the torque constant of the motor.

Because of the constraint that the tendons must be taut at all time, and the assumption that the

tendons are inelastic, the angular rotation of each motor is related to that of the arm.

Specifically,
r'y, = lu - ,(9, ) (2.43)

where Q8, 0, 0) is the length of tendon i (from point Q, to point P,) when the arm is at the position

defined byl, 4, ', and/o - i(O, 0, 0), which implies that -y, = 0 when 0 = = = 0.

By differentiating equation (2.43) with respect to time once, we obtain

V= + + (2.,44)

By differentiating once more,

(V 60 6V 021 2

at1(l, . . A , . (2.45)

By substituting equations (2.44H2.45) into equation (2,42). we can obtain expressions for the F,'s in

trr, is of the 1J's and the three angles 0. 0, and 0. By substituting these into equations (2.36)-2.39), a set

of differential equations describing the dynamics of the tendon arm system is obtained.
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By defining,

X [ 0 0 ,,tJT  (2.46)

u= , /I'2 13 14JT (2.47)

and rearranging terms, be obtain the equations of motion of the system in the form,

i(t) = Fo(x(t)) + Ilu(x(t))u(t) (2.48)

where

Fo(x) is a 6-vcctor, and

Bo(x) is a 6 X 4 matrix.

The full detail of equation (2.48) is given in Appendix B.

2.3 Reduced-Order Model

The equations of motion obtained in the previous section is too complicated to be useful in the

design of a controller. Much of the complications arises from the geometry of the tendon arm system.

A simplified fourth order model is obtained by ignoring the tendon wrapping about the arm, thereby

reducing the three degree-of-frecdom arm to a two degree-of-freedom one. This is achieved by equating p

to zero (recall that p is the radius of the cylindrical arm).

p = 0 (2.49)

This, in effect, is to ignore the twisting movement, 4, of the arm.

F-luations (2.39) become:

(F2+q sne o F) ( 4  F3$asin in + mgdain 0cos~ (2.50)
c F c (t 14 13

J cooe - 2o_ ine) F 3 at cos +mgdsinO (2.51)
J(~ce9 2Ouin) = 14 13



19

where

1 a 2 + b2 + 2absinO]i

12 (a 2 + b2 - 2absinO~j (2.52)

13 182 + t2 + 2st sin 0cosO (

14 [82 + t2 -2st sin 0 cos 1

lrom equations (2.42H2.45),

For i - 1, 2, since L is a function of 0 only,

![K J,( dl+ d21, B dI, .
dOO [Kh+9L + (2.54)

I.

Substituting equations (2.53)-(2.54) into (2.50)-(2.51), and rearranging terms,

6.6
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+_I (sd1 1  I d12  at sinsin + 1414 \
9abcosO + 1 Jm 0 1, dO9J 13os 4~i

+ ,t s0 in 1 13 1 014 '
abcosO j .k L30 + 1 7

L2 _ I, stsn,. in0 L 3_) +, ,.dri2 sin 0 l. sO1,FF 11 abcos6 r- -ti~iO (14 13 ~ mgdT cfOS
-2 tsin inO iC 3  1014\

abcosO ki30 14,yoJ

I ±~ d- at sin inl 113 1 a014'j

[(-I dO 12 dO) abcose (10 1 46

t Sin sin 0 1 (921, 1 (914

dy jefin1n 213 1 n ( 342

±Icd02 1-- ±III . ..I .. . ... I

+ + dg~ 21, ~ 1 + 2 a i i 101 1 1A4 10 .54
11 .[r 2sn (2 d0213 b s 101 13 M2 10213 12

+ O~j.0K l + j .. [4m Ii +1 1813attCs a- 1 1 j3 V 4 JJ\ 3

(14 13 st 13 1441

+3 ; i F )W (2.56)

By defining,
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11 dlO 12 dl
10 l 1d bd

L,2o = Ia3 Ie.
13,90 14 
1 d211  I d21.2

1 dO2  12 dO2

I 08 3I 1 2i.,
L , a9 2  14a8.2  

(2.57)

1 at 1014

1 021,1 1(921,1
13(902 1., 0 2

1 213 1 (9214
L -13 WO 14WO

st sin ksin0
e- - abcosO

and

and N = [Jr2/abcosO + J,?jL  - Jmel 20 -r.I.,,e[2r, J (2.58)
J.,L2o Jr ? Cos 0/,s ,6e o;2 ;., ,,

Equations (2.55)-(2.56) can be written as:

I"]
K/,K/2eKr/13 -eKr/ 111121 tan~cosodr2 /ab~So -Kr/i Kr/ 4 ±J N [ ta tcdr 1 '8t ],,m

.14.

[eBmL20 B_ .. --. Lo +- eBmo,,,1,2 o
- ~+ N-1 ':.] + N-1mLo~

+ N-'[ 2 eJL 2e ,20 l2d
Jr 2 sin O/at cos 'P - J,nLolJ

+ ~ CrL2,00 - Jr 2 sin O/ab 2 + ~ ,Lo N+i fJvi200]0+ N- r' -4 00¢ b] +  L - -atzo

4 ,0, 0 ] , ]4, (2.59)

where u = 1, 12 13 41T .

F-.
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Define

the reduced-order model can be written as:

.i(t) = F(z(t)) + B(z(t))u (2.60)

where

[ X3(t)
F(x(t)) = 4((t)) a 4-vector (2.61)[ z4 (t))

f4(X(t))j

B(z(t)) = - a4 x 4 matrix (2.62)

b4(X1(), 2(t))-

Note: It can be easily shown from equation (2.58) and several simple substitutions that the determinant

of N is always greater than zero for all 0, 0 between (but not including) -7r/2 and +w-/2. Hence N-'

always exists.

2.4 Comparing the Responses of the Full and Reduced-order Models

"Fo investigate the effect of representing a sixth-order system by a fourth-order model, a step of mag-

nitude four is applied to both 12 and 14 of the fill (sixth) and reduced (fourth) order models developed in

sections 2.2 and 2.3 respectively.

The responses of the two models are shown in figure 2-9 and tabulated in Table 2-1. (The values of

the parameters used is given in Appendix G).
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It can be seen that the difference between the two is small except for thc fact that the reduced order

system cannot model die angle 0.

Table Z- I (a) Response of ihe Full Order Model due tD step inputs on I& and 14.

,Time 6e f c z 4
(mnsec.) ('radia,) (radian) (rarn) (ra f ec) (rdlsec) (radlsec)

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0020 0.0017 -0.000o4 0.4075 0.3306 -0.0877

?O 0-0081 0- 00" -0.018 0.814, 0.66q -O. 80q

30 0.01 0014q -0.0041 I , 2226 0.q't54 -O-2956

40 0.052o 0.02G65 -0'0075 1.658 I- 92q -0"4060

so O.051O 0.04-6 -0012.3 2.0"1 I 6768 -0.5-,4.5

60 0.039 0.0l -0 -) 2.4451 2.ool - 073G

70 0.1003 0.062Z - 0.0271 2.U'- 2."10 - O.'q4Gc

80 o.1315 0.1081 -0.0378 -341 2.7028 -1. .073

90 0-1I466 0.1580 -0.0g(4 3.1474 5.19"A - V V4-

100 O-.OWC3 0 " 17-.I - o.G04 4-1657 .-.4 ,1 -f.. .I m3

110 0.250*5 o*.ii - o.oy5, 4..C275 4.14o -2.s'a84

120 0.2998 O..-591 -01154 -070 4.7040 -2-654"

150 0.5517 0.3054 - 0.14 5.510 -o 354 3 - 5.44 G

140 0.4o9o .0362 - 0-I,47 g-'139 G.4o -4. 1191

ISO 0.474. o. 4198 - 0.2q4 6.34"75 7 Oq64 -4.6444

I1i0 O-358 0-5055 - 0-16 G 71S2, 8-2q84 - G -r 654

170 0.- 6045 O-5 -0.-34.0 -7-0115 c?- . . -G -,2..04

80 0.6756 0-'7041 -04057 7.I.2t 11-.8985 -G.GS''7

,~ ~ ...I
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rable 2-1 b Response of -%e Redu~ced order hodel
doe io Step Inpu.ts on 12- and 14

Tme t9

(msec) (radicin) (rddn) Crad/sec) (roa/sec)

-0 O*Oooo 0.0ooo 0-0o0o 0.0000

10 00020 0o00(l 0-4070 0-33q3

20 0 *o0&J 0-006 0-814 0- 741

50 0-0163 0-0153 1,2203 1.0206

40 0.0325 0-0212- 1~.861 1,3rys9

50 005o'J 0-04z6 2-0316 1-716

6 0 0.07ai4. 0o- (vI r 2.4S4o 2.o764

70 O.1ooo 0-0042- 11-071' .2406

80 04306 01IIOG -A 2qG, 2e~b#e

'1o0- O61~5 0(4l 9-7Q10 0.-ZS4z

100 0-052-. O1?T8 4-1446 b 7o4i

Ito 0.2466 0.11&3 4.951 4.2013

120 0167 O.2fooI S-0014. 4-7627

00 0-4Sf 0.34S) r.Bz~s 6.t7b4

150 0-45 0-4.341 ro2o7 7.1052.
1*0 0.52.1l 0 .5160 6 6 24z. ?A fr

170 a-514 a~f .6O .17!p q.-72 4 3



Chapter 3. The Time-Optimal Control Problem

As mentioned in Chapter 1. we would like to devise a control scheme to bring the arm from its initial

position to any specified final position as fast as possible. i.e., given any desired Dosition z1 , we would like

to find the control u(t) which drives .(t) - xf to zero in minimum time, where x(t) is the actual position

of the arm at time t.

In this Chapter. we will first fomally state the time-optimal control proulem as applicable in our

case, and Pontryagin's Minimum Principle will then be used to derive necessary conditions for the time-

optimal solution. We will then examine the time-optimal control of the tend n arm system using the

reduced-order model.

3.1 Problem Statement

Given the dynamical system with state x(t) and control u(t),

i(t) = F((t)) + B(z(t))u(t) (3.1)

where

X(t) is a 4-dimensional vector

u(t) is a 4-dimensional vector

F(x(t)) is a 4-vector-valued function

B(x(t)) is a (4 X 4)-matrix-valued function

Find an admissible control u(t) which takes the system from the initial state xo to the final state xf in

minimum time, i.e. find u(.) to minimize the following cost function:

J(u(.)) = / dt (3.2)

where an admissible control u(.) is defined to be one such that every component satisfies the following

26
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magnitude constraint,

u,,,in l ! ui(t) < u,,az i = 1,..., 4 (3.3)

or written more compactly

u(t) e 11 for all t E [to, tf (3.4)

t- - in equation (3.2) is free. and is part of the optimal solution.

In addition, F(x(t)) and B(z(t)) are assumed to posssess the follosing properties:

I. f,(x) and b,j(z) are continuous in z, and

2. Of,(X)/O1 ,,8bi(z)/OXk are continuous in x,

where x(z), bij(z), xi are components ofF(x), B(x), and z respectively.

3.2 Application of the Minimum Principle

Pontryagin's Minimum Principle (Athans & Falb[3]) furnishes us with necessary conditions which

the time-optimal control u'(t) must satisfy. Any control ue(t) that satisfies all the necessary conditions

is known as an extremal condition, and is a candidate for the optimal control. If a time-optimal control

exists, and if there are more than one extremal control, then the one with the smallest cost given by

equation (3.2) is optimal.

In order to apply the Minimum Principle, we will define the Hamiltonian:

nf(z(t), p(t), u(t)) = I + pT (t)[F(z(t)) + B(z(t))u(t)] (3.5)

where p(t) is a 4-dimensional costate vector.

Let u'(t) be an admissible control which transfers the system from 2b to z, and let z*(t) be the

corresponding trajectory. In order for u*(t) to be optimal, it is necessary that there exist a function p*(t)

such that:

(a) po(t) and zo(t) arc a solution of the canonical system:
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i'(t) -- (OH ), P'(t), U'() (3.)

it - (x'(O, P'(t), ,,'() (3.7)

satisfying the boundary conditions

(3.8)
Xz(ts) -

(b) For all I G [to, t],

H(x(t), p(t), u(i)) :_H(z'(t), p(t), u) for all u E 0 (3.9)

(c) For all t E Jt, tf],

H(z'(t), p(t), u(t)) = 0 (3.10)

'Ihis is a consequence of free terminal time and time invariance of the system.

Athans & Falb[3] presents a heuristic proof of the Minimum Principle, whereas a formal proof can be

found in Pontryagin et alo41.

3.3 Bang-Bang Control

Substituting equation (3.5) into (3.9), necessary condition (b) reduces to

p (t)B(z(t))u(t) B(x(t))u for all u E 11 (3.11)

or written in component form,

4 4E ,(t b,,(z(t)P:(t ,,( bU( ()p,(t)) (3.12)
ijA i-i
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for all uj satisfying equation (3.3).

If we define
4

qo(t) = b,J(x(t))p*(t) j= 1,... 4 (3.13)
,=l

Equation (3.12) then becomes
4 4

u{t)q{t) < ujq(t) (3.14)

The control u*(t) which satisfies the above inequality and subject to the const raint of equation (3.3) is

given by
U;(t) = U.' ifq'(t) < 0

u*(t) = Umin if q(t) > 0 j =1,..., 4 (3.15)

u(t) indeterminate ifq;(t) = 0

We see that u'(t) is well-defined by equation (3.15) if there is only a countable set of times tj E fto, 'A

such that

q;(t3j) = 0

Under this condition. every component u*(t) of the optimal control u'(t) is a piecewise constant function

of time, u*(t) is then known as a bang-bang control, and we say that the problem is Normal.

If, on the other hand, there is one (or more) subinterval [tin, t,,] within [to, tf] such that

qj(t) = 0 for some j and all t E [tin t,]

then u.(t) is not defined by equation (3.15) for i E [tm, inJ. and we s y that we have a singular time-

optimal problem; the time interval it, tJis called the singularity interval.

Hence we see that if the problem is normal, the time-optimal control is bang-bang. For linear

time-invariant system, we can derive necessary and sufficient conditions for the time-optimal problem to
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be normal (see e.g. Athans & Falb[3I) or singular, but for general nonlinear systems, there is no such

conditions, hence it is very difficult to rule out the existence of singularity intervals before solving the

problem.

3.4 Time-Optimal Control of the Tendon Arm System

For the tendon arm system, the equations corresponding to equation (3.1) are given by equations

(2.60H2.62) which describes the reduced-order model.

Since the tendons can only pull but not push on the arm, there is a non-negativity constraint on the

control, and equation (3.3) will now be replaced by

0 ui(t) Um t,, i = 1, .. ,4 (3.16)

The expression for B(x(t)) can be obtained from equations (2.62) and (2.59):

If we represent N-I in equation (2.59) by

2 (3.17)

Then

.([61 32 33 3[b4(Z(t))J Lb4, 642 642 64i

[h, h11[_ r/1 Krh W I13 -eKr/L 4

L2 0[JL  0 o -Kr/13 Kr/14]
Kr [-hi /1 hi /2 -(hl,2- Chi )113 (h12 - ,,)I14]

_l/11 21/1A -(h 22 - dt2l)/13 (h22 - d 12 '318

and from equation (2.62),

b = 0 for i = 1, 2, j= 1,..., 4 (3.19)
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Substituting equations (3.18) and (3.19) into (3.13), we obtain the following expressions for q'(t):

*h, j P(t) + h2 I P4(t)
q1(t) = -Kr

q2(t) = Kr hl1 pj*(t) + h2 ,P4(t)
S(h 12 -Kr 1 i)p(t) + (h2 - d.,,)p;(t) (3.20)

q() = -Kr ,1

q(t) = Kr (h12 - eh 1)P*(t + ( 22  eh2i)P 4()
'4

The q;(t)'s will be used in equation (3.15) to determine the Nalue ofu*(t). Since the sign and not the

magnitude ofq*(t) is important, and since K, r, 1j, i 1,..., 4 are all positive, we will define a new set of

4(1) that can also be used in equation (3.15):

(t) = -(h Ip (t) + h2 I P(t))

(t) = h] 2t- eh 1 )p3(t) + (h2 - h2 I)P(3.21)

4(t) = (h12 - Ch, )p;(t) + (h22 - eh2I)p4 ()

and the optimal control u*(t) is given by

Uj(t ---U,.. if 40(t) < 0

U;(t=0 if ;(t) > 0 j =1 . 4 (3.22)

u;(t) indeterminate if ;(t) = 0

where /;(t) is given by equation (3.21).

Note that in equations (3.21).

4( = -4*(t)

If we define new variables q* 2(t), q34(t) given by

q 2(') = 4*;(i) -(h, 1 p(t) hP()) (3.23)
q34() = 4( = -((h, 2 - Ch,)p(t) + (h22 - h2 )p4(t))
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Then equations (3.22) can be rewritten as

if q, 2(t) < 0, ;(') = ,,, U;(') - o

if q 2 (i) > 0, u(t) = 0' U;Q) -- ,.' (3.24)

if q 2(t) =-0, u,(t), u;(t) indeterminate

and

if q3 4(t) < 0, U*(t) = U--' U*(t) = 0

if q.4(t) > 0, U(t) = 0, U,(t) = (3.25)

if q41 (1) = 0, u*(t), u*(t) indeterminate

From equations (3.24) and (3.25), we see that there is a certain relation between ul(t) and u*(t), between

u.(t) and u*(t). except in the case when q* 2(t) = 0 or q34(t) - 0. The four control components seem to

work in pairs, u;(t) and u.'s(t) forming one pair, u*(t) and u.,(t) forming the other. This agrees with tie

physical situation, in which tendons I and 2 form one pair, and tendons 3 and 4 form the other.

Necessary conditions (a) and (c) apply directly to the tendon arm system with the appropriate

definition of the Hamiltonian fuinction.



Chapter 4. Iteratise Solution of tht' Tintie-Optinial (Control Problem

4.1 Introduction

In Chapter 3, w c have seen that the Nininuin Principlc prm idcs u 'Aih neccs,air conditions that

the optimal solution Must S.a[isfy. In particular. imaniptilation of necessai Lo1161601 (h) yiclds eqiiations

(3.24) and (3.25) %hich express u*(t) in terms of z(t) and p*(). If the piohlei: is non-singular. uo(t) is

%ell-defined and theoretically we can solve the time-optimal conrl pohlcmn b% cl rmating u*(1) from

the canoniAl sstem giscn by cquatiions (3.6)-(3.8), anid solving the rcsulting to-pottt bo ndaty \alue

problem to obtain .r(t) and p*(t), and hencc u'(t). But tWo-point boundary \aluC problems are very

- difficult to solve analbtically except for some simple cases. K... for higher order linear and nonlinear

systems, wce must in general resort r, iteratise methods to obtain solutions.

A solution obtained by any iterative method is characterized by:

1. it is only applicable to a specified initial and final position pair. To obtain so[ltions for other pairs, we

have to repeat the entire iteratie solution procedure, and

2. it is expressed as a function of time.

The first statement means that we havc to precompute and store the control trajectories of every

relevant initial-final position pair, the second means that the control is open-loop and hence cannot

correct for any departure from the intended trajectory due to, say. external disturbances. These are

disadvantages, but since the complexity of our system precludes any other solution approach, we have to

employ the iterative approach and take into account the aforementioned disadvantages in the design of

the overall control scheme ,hich will be discussed in later Chapters.

Plant[5i and Mufti[61 provide a surveys of various computational methods in optimal control problems

and each contains a long list of supporting references. The criteria for choosing an iterative method for

our problem are that,
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1. it is easy to code, and

2. it can handle singular problems.

The second point is essential because as mentioned in Chapter 3, the possibility of the prescnce

of singularity cannot be ruled out, and in fact, from so mc preliminary runs using the steepcst descent

method, one pair of controls does not approach bang-hang, indicating that the p, oblem might be singular.

'liere are some computmiond methods developed expressl) for singular pob)emns (see e.g. j7]-[l 0]).

But the Conjugatc Gradient method is chosen because

1. it is bsicall) a first ordci method, hence its implementation is simple, and

2. it conNergcs quadratically near the optimum solution, and

3. it can handle singular problems.

4.2 The Conjugate Gradient Nlethod

The first order gradient method is easy to implement but suffers from slow convergence near the

optimal solution. In 1967, the Conjugate Gradient Method was applied to optimal control problems [111.

[121. The convergence rate of this method is superior to the gradient method with very little additional

computation per iteration. Pagurek & Woodside[13] and later Quintana & I)avison[14] extended the

method to problems having hounded control constraints.

We will first describe the Conjugate Gradient method as applied to a free end point, fixed terminal

time, optimal control problem, and in the next section, we will show how it is adapted to solve our time-

optimal control problcm.

Problem Statement

Given the system

i(t) = F(x(t)) + B(z(i))u(t), z(to) = (41)

Find u(i) over the inter~al it(, tf] to minimize the cost function given by
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J(u(t)) = K(x,(t)) + L(x(t), u(t)) dt (4.2)

where t/ is fixed, and u(I) is assumed ro be unconstrained.

Define the Hamiltonian

H((t), p(t), u(t) = L(x(t), u(t) ) + p"Ct)[r(x(t)) + B(xCt),,Ct)] (4.3)

Then tie necessary conditions as give i by the Minimum Principle are the same as cquations (3.6H3.10)

except for the boundary conditions (3.8) which are replaced by:

X*(to) =
P(t) OK . (4.4)p'tl -=K(z (ti))

Solution Procedure

Define
OHH(z(t), p(t)) = OH (z(t), p(t), u(t)) - B T (z(t))p(t) (4.5)

Lct superscrpt i represent the iteration number, and assume that we start with an initial estimate of the

optimal control trajectory ul(t).

At the ith iteration,

1. Using u'(t), integrate the state equation forward from time to to t,. with z(tO) = ZO, to obtain z'(t).

Then, substituting z4(t) and u'(t) into the costate equation, integrate it backward from t! to to with

oK

- to obtain pi(t).
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Compute

9 (t) = n,(p'(t), x 0)(4 6)

2. )etcennine cojtugamc-gradicnt direction using:

s'(0 - g'(t) + 3 s'- 1 (t) (4.7)

where
~if i > I

J10 t1 (4.8)

3,--I 1 0 if i = 1

3. Compute next control b .

ui+l(t) = u' - a's'(t) (4.9)

where a' is chosen using a one-dimensional search to minimize J(u -  )

4. Repeat the whole procedure with i = i + I until J(.) does not improve significantly.

Control Constraints

To take into account constraints on the magnitude of the control as given in equation (3.16). the

above procedure is modified as follows (due to Pagurek & Woodside[131):

1. Assume that W' is tie saturation region of u,(1): define the scale function

w;(t) = 0 fort G W,, and (4.10)
= I elsewhere

Note: subscript j refers to individual components of the corresponding vector.

2. When computing 3' I. u,,T(t)g'(t) is used in place ofg'(t).

3. After computing u' 'I according to equation (4.9), ui+|(t) is truncated at the upper and lower

bounds bcfi~rc it is used in the computation of J(ui+ ().
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4.3 Algorithm for the Time-Optinial Problem

In order to apply the conjugate gradient method as presented in the Iast sLtnon. the time-optimal

problem as stated in section 3.1 is modified as follows:

1. A sequence of fixed terniial time, free end point problems, are sol~ed iinsteaid ol die origindl free

terminal time problem.

2. The fixed end point comstraint is handled b means ofa quadrutic pcnlt. funmtion. that is. w e solve

the following problem:

Given the dynamical equation described by equation (3.1). find a contiol u(t) G 1,,s a, to minimize

Lhe following cost function:

subject to x(tt)) = A), with to, tf and xf given.

If tf is too small, i.e., tf < Trj,i, where T,,,,, is die minimum time solution, the sstem cannot reach Z,

with the control in Q, hence J will not be close to zero. As Gi increases and approaches T,,,,,, however,

the optimum J value will decrease, and the smallest tI such that J is zero (vsihi a certain tolerance) is

the solution to the original time-optimal problem.

Choice of t

We can always start with a very small t and gradually increase the Nalue of if. but this will take too

long as each round (i.e. soling the modified problem with a given tf) by itself takes a long time (when

run on a PDP 11/34 mini-computer). Hence we will make use of the special structurc of the optimal

control to provide an estimate of Tin.

It was found from some preliminary runs that in an optimal solution, one pair of controls, either

Ul and u2 or u3 and u1, always approaches bang-bang with only one switching, and the form of the

other pair will depend on the relative magnitudes of 0 and Of, which define the final position of the
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ann (henceforth e \&ill ,aIIInc that x) = 0, i.e.. we are interested in moing the arm from an upright

position to any specified mial po sition. Although the two pairs of controls are coupled through thc system

equation. the coupling is nt r strong, and one can clearly identify the pair ut and u2 as affecting the

angle 0 much more stroilgl\, tlan u u and u.1, and similarly, de pair u3, u affects 0 much more strongly.

Hence the time taken for 0h m to rrose from 0 = 0 to 0 = 0 is determined mainly by ul and u2 , and

is only slightly affected h u j md i 1, the same applies to 0 with u3, u4 exchanging roles with ul, u2.

Hence to find the tmw tAken fOr .he ann to move from 0 = 0 toO = Of, 0, we will keep

u3 and u a to be iero (theheh\ eanstiminj. to stay 0 throughout) and find a bang-bang control that will take

0 to Of, this is a much easic prohlcm to sohe because we need only to search over the s'itching time.

which is only one-dimesional and can be easily done manually. Similarly we can find the time taken to

move from 0 = 0 = 0 to 0 =- 0. = € O. The larger of the two values found above will be taken as an

estimate of T,...... This \alue v as found, in general, to be greater than T,,,, by about one to three time

steps (each time step is 5 mscj}. Hence the initial choice oftf is taken to be three time steps smaller than

the estimated T,,,,, and we need to solve at most three rounds of the modified problem to obtain our

solution.

Choice ofQ

Q is chosen to be diagonal and serves to weight the different components of x indixidually. We chose

the q,, that correspond, i Ow t a:c ir, h: mainly affected by the bang-bang pair of controls to be twice

the valic of the ict I as 1 IcL.Isc as tie iterations proceed, it becomes more and more difficult to

reduce that error term, as we are trying to reduce the transition time of the bang-bang control, making q,,

larger helps.

Choice of Initial Guess of u(t) in the Conjugate Gradient Method

The initial guess is chosen to be
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u, (t) Fzt 0 for i 1,. , 4 and for all t G 14), t,1 (4.12)

and we started with sc'erall iterations of steepest descent before sAitclhng oUci i ,lic jugmc gradient

method.

Miethod of' finding at

As mentioned in the procedure for the conjugate gradient method, a' is dhCnI l Using a one-

dimecnsional search technique, T'he method we used is to fit a parahola to im point of a's chosen so

that the ififin of the parabola falls within the two extreme \ alucs (0 ilhe oas, W' I" Lch' (N to he the

\aILe Of a that minimiz~es the parabola.

4.4 Approximation of the Optimal Solution

The results obtained using the conjugate gradient method for a prnuo~r fin.il pt),lliof is given in

figure 4-1. From this figure, we can see that the pair is3 and i.1 approaches lung-hang Aithi One switching,

but not the pair u1 and u2.

The optimal solution can be approximated by straight line segments as slio" ni in figure 4-2, dhe stae

trajectories for the optimal and the approximated control are shown in figure 4-3. and we see that the

response due to the approximated control compares favorably with the optirlal solution. Any deviations

from tie desired state at the terminal time will be handled by another closed-loop control law which will

be switched in after the open-loop control is terminated.

The general form of the optimal control and its approximation %kill be elaborated in Chapter 6.
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Chapter 5. Regulation at the Final Position

5.1 Introduction

Since the arm is attached to the base plate by a three degree-of-frecdom "joint". positive steady-state

tensions in the tendons are required to maintain the arm at any specified finai position. The required

control currents can be calculated by setting

-f= Af~z, U, = 0 (5.1)

where xf is the specified final state of the system.

A uf that satisfies the abo\e equation will be called a steady-state control for the set-point xz.

If the arm is initially at the required final state xf, then ui will keep the arm at x. as long as there

is no external disturbance. However, any slight disturbance will cause the arm to move away from this

equilibrium position because the equilibrium achieved by applying constant open-loop controls u! is an

unstable one.

Moreover, the transient phase open-loop control that brings the system from initial to final state

is based on a reduced-order model of the system, and also in order to implement it, it is necessary to

approximate the form of control by straight line segments. The open-loop control can only be stored at a

few points and the control law at other points is derived by interpolation. Hence at the end of the transient

phase during which open-loop control is applied, the final state reached by the system is not x1, but rather

somewhere in the vicinity of it.

In view of the above, closcd-loop feedback control is required to

1. bring the system to the desired final state x/,

2. maintain the system at x1 for any amount of time.

5.2 Lincarized Model
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Am -f% m

Figure S-I. Block diagram for the closed-loop feedback controi scheme.

Let z1 denote the desired final state, and u1 denote the steady-state control thai satisfies equation

- ~ (5.1).

Define

1. State perturbation vector 6z(t):

6x(t) = z(t) -

2. Control correction vector 6u(t):

6u(t) = u(t) -,

Then the control objective can be stated as follows:

Given 6z(t), find 6u(r), r > t such that future state perturbation vectors 6x(r) are as small as

possible for all -r E It, oo), or find a controller, as depicted in figure 5-1 that will accomplish this.

We will employ the linear-quadratic approach to designing the controller. Since we are trying to keep

the system at a fixed set-point, this is also known as the linear regulator problem.

First we must derive the relationship between 6z(t) and 6u(t):
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x(t) and u(t) arc related b\ the system equation:

(t) = fAX(f, U-M() (5.2)

IExpanding f(x(t), u(t)) about xf. uf in a Iaylor series expansion,

(x(t), u(M) =/(xI, uf) + Of(f, ,,f4 + 'f,(), )u() + h.o.t. (5.3)

where hot denotes the higher order ternms in the laylor series expansion.

Since

and

:il = fxI, u/) 0,

we have,

= ot) (x, uf)6x(t + ! ,(zf, uf)bu(t + h.o.t (5.4)

Define

A = Y(x, u)
O , (5.5)

and assuming that (he higher order terms are negligible, we obtain to first approximation that

bi(t) = A6x(t) + B6u(t) (5.6)

For the remainder of the Chapter, the 6-notation will be dropped for simplicity, and the linearizcd

model will be represented as

z(t) = Ax(t) + Bu(t) (5.7)
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5.3 The Linear Regulator Problem

Gincn ie linear time-imnariant system

i(t) A(t) + Bu(t) (5.8)

and its inifial condition zr4, find u(t) such that the follow ing quadratic cost functi mnal is minimized

J = f(T(t)Qr(t) + ur(t)Ju(t))dt (5.9)

where Q=QT>O, R =R T >O.

Derivation of the solution to the abosc problem can be found in K ,akcrnaak & Sikan[15]. It is

shown that the optimal control u*(t) is given by

u(t) = -Gx(t) (5 10)

where

G = R-IBTp (5 11)

and P is the solution of the following Algebraic Riccati l'quation (ARF):

0 = -PA - ATP - Q + PBR--iBTp (5.12)

If the original system is completely controllable, then the solution to the above ARE exists. In

addition, since we are assuming that we are observing all the states, the system is completely observable, it

can be shown that the fcedback system is asymptotically stable (sec e.g Kvakernaak & Sian1S).

We will now consider the choice of the weighting matrices Q and I? in the cost function given by

equation (5.9):
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In general, the selection of Q and R is not a simple matter; they arc usualb chosen on tic hasis

of engineering experience coupled with simulation runs of the resultant system using different Acighting

values. In most practical applications. R and Q are chosen to be diagonal because in this way we can in-

dividually penalize specific components of r(t) and u(t). We will likewise choose R and Q to be diagonal.

Since there is no reason to penaluic any one component of u(t) more than th,. ohers. R is chosen to be

of the f)nn p1. where p is a positie scalar. Once Q is chosen. by adjusting p, we can sary the relatie

weighting between the state perturbation and control perturbation vectors.

Specifically, the effects of p are:

1. the smaller p is. the faster is the state perturbation vector x(t) reduced to zero, this corresponds to the

poles of the system being pushed to the left of the a-plane.

2. the smaller p is. the larger will be the feedback gain matrix, i.e. G in equation (5.10), this corresponds

to large control magnitude.

Hence there will be a tradeoff between the speed u,' response and the amount of control to be put into the

system.

When we consider the maximum allowable magnitude of control perturbation, we must bear in mind

the control constraint which is given by

0 < u,(t) !" u,., for i = 1,...4 (5.13)

where u,(t) here is the total control input to the system.

In our case, since we arc interested in reducing the position error to zero as fast as possible, we

choose not to penalize the velocity terms. Hence Q is of the form,

F=13 031L03 03j

and p is chosen so that the slowest pair of poles is only slightly underdampcd so that there will not be

much overshoot.
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Fak ing all these into consideration. and after some trial and errors tnd looking at tile closed-loop

eigcnmalues and resultant runs. p is chosen to hc 0.2. ['he %alties chosen are no( optimal. but they repre-

sent a reisonable choice and yeld aai acceptaible response. The response can of course he inprox cd Upon

b fuirther fine-tuning, but we are no( putting an) emiphasis on it at this stage,

-5.4 Detcermination of Stad -Stale Control Input

'hc stead -statc control uf-(t) equired to hold tie arm at any Position. Say Of. Of. t~. can be ob-

Wined from equation (5.1), where z, (Of Of VJ Of Of VX Since x(t) is it 6-%cctor, we will

obtain six algebraic equations froml equation (5 1. 1 111 the first thee do not ni.olve u(t) and only give us

z, = x)= Aj= 0 w hich corresponds to Of1  f = 0.

llieretore from eqUation1 (5.1) and by suhstitu ting the UaLICs oIf Xf j (Of Of VI 0 0 O)T into

it. %ke can obtain three algebraic equations im'ols ing thle four scalar controls uf,. i = 1, . 4- by solving

these three equations, we carl obtain uf. Iloweser, note that we lla'e one degree -of- freedomi in choosing

uf subject to the three equations and the control constraint giken by equation1 (5.13). BN specifying any

one of the tsp s. we can uniquely specify the other three.

There are two ways of taking adv.antage of this one degree -of- freedom:

1. Ae could, for each position. find the minimumi 'alues of control that Aill satisfy the three equations as

well as the non-negatity contraint. Hffectmiely we are setting one 01 the uf,1 s to be icro and solving

the three equations for the other three uf,'s. Thie one to he set to icro is chosen such that all uf,'s are

non -negative.

2. we could introduce another algebraic equation invoking the uf,'s. arid by solving these four simul-

taneous equations we can get unique values for the ups. Specifically, the equation introduced

Is

4

tp=k (5.14)
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Since all the up's are ntn-negativc, the larger the value of k, the larger are the up's. In this context,

this degree-of-freedom is thought of as providing us with the freedom of choosing the overall control

level.

Ihc first method is attractive in that it provides us with a way of specifying minimum control to keep

the arm at any dciihcd position, since we do not want to expend unnecessary energy holding the arm at a

fixed position. lFloccer, since one of the components will be 7ero, or very near iero, the non-negativity

control constraint is casilN violatcd when we apply the feedback control law as 1 iven by equation (5.10).

On the other hand, the second method provides us with a way of specifying uf at any position such

that Luf, at all positions vithin the working space is the same. This is attractive because it was found

that if this is so, then the "main" components of tlic feedback gain G as given in equation (5.11) do not

vary significantly for all the positions. This point will be elaborated further in Chapter 6.

Hence the second approach is used. k is chosen such that for any position within the working space,

the u,'s obtained by solving the four simultaneous equations are all non-negative.

The value of k found and used is 7, and the most critical position (with one of the uf1 's nearest to

ero) occurs approximately at a = 450,/3 = 100, =-- 450.



Chapter 6. Inplementation and Simulationt of the Ohcrall (ontrol Structure

6.1 Introduction

As suted in Chapter 1. we arc interested in mu' ing the ari from an upiht positI1i1 1toa'. specified

final position. [he o rall control scheme for this nmeimcnt is diided in to to o phx,'c,. In tie first phase.

open-loop tine-optimal control approximation is applied to bring the arm to( th2 , init of the specified

final position. In the second phase. a closed-loop linear feed, ack contiol 1, ill he , itched in to bring

the system to the desired final position and to maintain it there.

In order to implement this control scheme. we must hac asailable the ()pcn-loop control and the

feedback gain for e\ery final position that can he specified. Since the okImpULtin time of the former is

too long and the memory requirement for the latter is too large for them to be CAlculated on-line using

the PI) 11/45 which is used for the control of the tendon ani. the\ mwt sonch he precalculated

and stored. Since it is impossible to store the values for eserN ptssiblc finl po|sition., Mhich are infinite

in number, we need to partition the entire state space into region and piecompute the open-loop control

trajectory and the feedback gain of a representatise point of each region and store them tn tables of some

sort. As for the other points in the region, we can either interpolate or use the same value throughout a

region. The latter approach is employed due to:

1. the feedback gain does not change significantly within a region, and

2. there is no satisfactory way of interpolating the open-loop control, and since feedback control is

employed in the second phase, we rely on it to bring the system to the desired state, and

3. it is simple.

The next two sections describe means of representing and storing the open-loop control trajectories

and the feedback gains. The last section describes briefly the program \A ritten for the implementation of

the overall control scheme.

51
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6.2 Reprcsentation and Storing of Opei-I.oop liiine-Optiinal Trajectories

Symmetry of the Control trajectories

The design and constrIuction of the cndo; arm is such that it restricts the range of movement of the

arm. In this thesis, this range Aill be t; ken as

O <a< -
-4o <,3 2w (6.1)

where a. /. i are as defined by figure 2-4.

We will divide this space into four quadrants with the following correspondence:

0 < / < I st quadrant

5 < <wr 2nd quadrant

7r <)3 < 1 3rd quadrant

; </3 < 2r 4th quadrant

For the time-optimal trajectories, there is a symmetry among the four quadrants such that only those

of the first quadrant need to be stored and those of the other three quadrants can be obtained from the

corresponding trajectory in the first quadrant.

Let u,(t), i = 1,..., 4 be the control trajectory that will bring the system from the initial position

to a final position defined by 0 = Of, O f where (Of, Of) is in the first quadrant (recall that the time-

optimal control is obtained using the reduced-order model and hence 0 is not relevant).

Then, to obtain the control trajectory for

1. 0 = -Of, = -,: exchange u (t) and u2(t), exchange u3(t) and u4(f).

2. 0 = --Of, o fj: exchange uI(t) and ul(t), do not exchange ua(t) and u4(t)

3. 0 = O -Of: do not exchange ul(t) and u2(t), exchange ua(t) and u4(t).

Hence in all the discussion that follows, we will take the final position to be in the first quadrant.

.I
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Figure 6-2. Form of the bang-bang pair of controls

Form of time-optitnal control

As stated in section 4.3. it was found that, in general, one pair of controls is bang-bang and the other

pair is not (both pair of controls could be bang-bang for certain values of Of and Of). Which pair it is that

is bang-bang depends on the relative magnitude of Of and of.

In general, the pair that is not bang-bang can be well-approximated by straight line segments, and

they can be of any form as shown in figure 6-1. The pair that is bang-bang is of the form that is shown in

figure 6-2. Hence any pair of controls can be represented by the numbers hl, h2, I1 , t2, 6. If as shown in

figure 6-3.

There are two ways of representing the open-loop control trajectory for any final position:

1. Represent both pairs by the general form shown in figure 6-3. By choosing appropriate values for hn,,

h,, t, 2 s , f3,, ,. i = 1, 2, we can represent any of the forms given by figure 6-1 and the bang-

bang control of figure 6-2. (i = I represents u, and u2, i = 2 represents u3 and u4). Since in

implementing the control scheme with a digital computer, the time axis is discrete, hence the t,,k are

integer numbers. Using this scheme, we need a total of 4 real numbers and 7 integer numbers to
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Figure 6-I. Various forms of the non-bang-bang pair of controls

reprcsent thc control trajectory of each final position.

2. Reprcscni the non-bang-bang pair by thc gcneral form, and represent the bang-bang pair by one

number, that of the switching timc. Hlence in this scheme, we need 2 real numbers, S integers and 1

bit to indicate which pair is bang-bang.

Thc first method is chosen because it is straightforward to code and at this stage we are only trying out

' ovcrall control scheme using simulation and hcnce thc partitioning into regions is very coarse and is as

shown in figure 6-4. We are not too concerncd yct with conserving storage.
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Figure 6-. General representation of any pair of controls

- In practical implementation, wc need of course to partition the staite-space into a finer grid, hence

reducing the storage requirement per point will be one of the primec concerns. We can then consider the

following two ways of saving storage:

I 1. With the sampling rate (5 msec) used, the maximum time step corresponding to tf is less than 100,

hence we can pack two time values (e.g. tj and t2) into one word.

2. In actual system implementation. thc control will be applied to the motors via digital -to-analog con-

verters which takes integer valuc as input, hence the control values can be stored as scaled integers

instead of real numbers.

If these two modifications are implemented, only 8Swords for the first method and 5 words for the second

- method arc required per point.

6.3 Representation and Storing of Feedback Gains

II T h e f e e a c a i p e n t tion t h e n e e g cul aeto e sri in h 4s6 m t , r - ei nt f , , i n e I d. n c e
1,educi repesng the trge oqumo ent p of n , l th en g, e is th pme contribtio of can toe usi e ithe
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44)

Figure 6-4. Partitioning used in the simulation run

a

us - iz (6.2)

where i is dhe steady-state control.

H ence we can partition tie matrix G into main components and cross-coupled components:

For u, and U2, since they directly affecct 0 and 9, and only indirectly .0 and , We Will treat g11, 921, 914. 924

as main components.

Similarly for u3 and U41, since they directly affect 0 and 4. we will group g32. 042,35 g45 as main

components.

IM
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241 94d Ah So

Figure 6-5. Cross-hatched area showing the main elernenis of matrix G'

Since all four controls directly affect t and 4, we will treat g9j. g,6, i = I, 4, as main components.

Hence as indicated in figure 6-5, the cross-hatched elements are the main components.

Table 6-1 shows the feedback gains for the various positions indicated in figure 6-6 and for - 0.

From this table, we can see that the values of the main components do not xar much for different

positions, and it is only the cross-coupled terms that change significantl , for example, compare gzl, g2 of

points 5 and 6, there is as much as an order of magnitude of difference.

Table 6-2 shows the feedback gains for position 3 (a = w/6, r /4) but with different values of

. It can be seen that all components of G do not vary significantly for diflerent 0, hence we will take

them as the same and equal to those at ip 0.

Table 6-3 shows the feedback gains for position 3 and its corresponding positions in the other three

quadrants. To a first approximation, we can obtain G of the third quadrant from the first quadrant, and of

the fourth from the second as follows:

exchange row I and 2, row 3 and 4, and

change the signs of all the elements except those of columns 3 and 6.

i-I
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'' 4

Figure 6-6. Figure showing various final positions used in Table 6-1

For implementation purposes, we will treat the main components of G to be the same for all posi-

lions in the four quadrants, using those of the upright position, and store the non-main components for

position 1, 3, 5 and 6 and their corresponding positions in quadrant 2, i.e., the partitioning into regions is

the same as for the open-loop control.

6.4 Structure of Oicrall Control Program and its Implementation

The working space of the arm is defined by equation (6.1) and is partitioned into regions as shown in

figure 6-4. The open-loop control and feedback gain of the representative point, called the center, of each

region arc ,,tored d, dct.' L cd in the last t sections.

When a set-point conuiand is issued, the program will first determine which region the final position

is in. after which the entire open-loop control trajectory and the feedback gain G for its center arc deter-

mined, these %ill be used for the final position specified. At the same time, the steady-state current at the

final position is calculated.

The open-loop control is then applied to the system: at each time step, generated by an interrupt
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from the real-time clock, a control Newtor is output tt the s ,eim. A uI cO d of the first phase. determined

b the final time of the open-loop control, the cloCd-loop lieiicar IK.cdhIL k hIA A ill be used: at the occur-

rence of each interrupt, the state of the system , read ' ia the A to I), horm l ich de state perturbation

%Ccto' bX is calcUlaed, and the control correction tcctor is calctulated by

u =- uf- - G6x (6.3)

where u1 is the steady-state control Vector.

This u is then output to the system.

Because the physical tendon arm system is not read, the o,% erall to ,chemoe A ill be simulated on

the PDP 11/45 computer. But the program is Aritien as if it is a ieil tme sem except that a software

subroutine is being substituted for the ann, and the time scale is c\pdided duoe t) the length of time

required for the subroutine. The block diagram for the program is gi en in inorc 6-7.

Figure 6-8 shows the state trajectories for three different final positions.

F'!

F'!
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occur _ iteipt '

19 current* X.

em fe P eqwoon feJrd

set up doc intrrupt for
closed - loop oonrol
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Figure 6-7. Block diagram for the overall control propain
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Table 6-I Feedback gains for te rious poltlons Shown in
Figure 6-e

I -.o" i o ° 00 o6

-4.0294D+00 -2.1103D-01 1.5C440+00 -6.0678D-01 -2.23330-02 3.3086D-02

4.02940+00 2.1103D-01 1.50440+00 6.06780-01 2.23330-02 8.30860-02

-2.69600-01 -4.8319D+00 -1.5363D+00 -1.80810-02 -7.5378D-01 -g.4850D-02

2.8960D-01 4.E319D+00 -1.53630+00 1.80810-02 7.53780-01 -9.48500-02

-3.4940'+00 3.6891D-Cl1 .C416D+CC -5.39200-01 4.2670D-02 6.90650-02

3.58890+C 7.4437D-01 1.04920-00 5.95550-01 8.72050-02 6.91740-02

1.70860-01 -4.3907D+0OC -1.03960+00 2.65770-02 -6.67810-01 -6.9136D-02

5.5215D-01 4.367aD+00 -1.09710+03 4.17200-02 7.3414D-01 -7.2071D-02

3 o,300. p -45"

-3.6966D+00 1.0323D+C0 1 .038',04f -5.2884D-01 1.10980-01 6.947bD-02

3.70280+CO 1.1766D+00 1.04800+00 6.30000-01 1.41530-01 6.91130-02

9.27020-Cl -4.44823+CO -1.0131D+00 9.9182D-02 -6.52230-01 -S.80770-02

5.6905D-01 4.4091D+00 -1.11800+00 3.3458D-02 7.44560-01 -7.32970-02

4 c : 4. p 4s'
-4.2914D+00 1.6954D+00 1.04170+00 -5.4604D-01 1.70140-01 7.08240-02

3.8881D+00 1.6345D+00 1.040T0+00 6.72430-01 2.016C0-01 6.86190-02

2.0307D+00 -4.5805D+00 -9.93080-01 1.96370-01 -6.1743D-01 -0.7677D-02

3.8914D-01 4.60250+00 -1.12670+00 -5.84560-03 7.6107D-01 -7.3971D-02
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5 'c 0', -30 0 °

-3.j41330 1.3 23CDc 1.06C33'00 -5.5295D-01 1.E310-)l 7.08483-02

3.6233DC-) 1.8534D-00 1.09653>00 5.72160-01 2.12133-01 7.3349D-02

-2.55910-CT -4.91460-CO -9.06543-01 -7.62110-03 -7.1483.-Cl -6.21950-C2

3.9595D-01 4.7433DZC -1 .13e23+QC 3.66990-02 8.0938D-01 -7.30630-02

6 .30" goo

-3.-63c30CO -1.30653-02 9.7825D-01 -5.12580-Ci -9.66560-0 6.5543D-02

4.0262.+C0 3.5434C-01 1 .C0330-CO 6.7718D-01 3.6848D-02 6.5561D-02

8.2385D-01 -3.88340+00 -1.15230+00 8.11490-02 -6.0983D-01 -7.5613D-02

1.3934D+00 4.16610+00 -1.09090+00 1.1188D-01 6.6908D-01 -7.3458D-02

7 c4 -45', p ,2 5'

-3.9004D+00 2.6739D+00 1.11030+30 -5.54160-01 2.86823-01 7.5540D-02

3.4575:+00 2.5295D CO 1.0946D+00 6.0214D-01 2.9411D-01 7.35030-02

1 .C434D 00 -5.05840+00 -8.36550-01 1.08650-01 -6.72513-01 -5.8113D-02

1 .2179D-01 5.2718D+00 -1.1241D+00 -1.2945D-02 8.73440-01 -7.22370-02

4 8 lb :75"
-4.1608D400 7.1318D-01 9.2594D-01 -5.0b27D-01 6.6269D-02 6.2946D-02

4.5281D00 9.10090-01 9.99793-01 7.45590-01 1.1204D-01 6.47840-02

2.3693D+00 -3.87690+CO -1.15570.00 2.2660D-01 -5.37390-01 -7.72280-02

1.22490+00 4.0157D400 -1.1283D+00 7.1972D-02 5.44590-01 -7.5914D-02
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'Table G-Z Feedback gain for positions with at 3o, j s 4-o

and diferent volueS of

-3.*1/23D+00 1.0C240+CO 1.05720+00 -5.30190-01 1.0526D-01 7.08970-02

3.73140+C0 1.15C60-CO I .0610D+C0 6.33140-01 1 .37280-01 6.9960D-02

9.2553D-Cl -4.356800+O -9.833:D-01 1.00100-01 -6.41030-01 -6.6190D-02

5.71940-01 4.28930+00 -1.1016D+00 3.4235D-02 7.27660-01 -7.23090-02

t€ o °

-3.68660+00 1.03230+00 1.0381D+00 -5.28940-01 1.10980-01 6.9476D-02

3.7028000 1.1766000 1.0480D+00 6.30000-01 1.4153D-01 6.91130-02

9.27020-01 -4.44830+00 -1.01310+00 9.9182D-02 -6.52230-01 -6.90770-02

5.6905D-01 4.4091D00 -1.11800+00 3.34580-02 7.4456D-01 -7.3297D-02

3 -4500
-3.6557DC00 1 .0644D-00 1.01930+00 -5.2694D-01 1.16920-01 6.8126D-02

3.6706:+00 1.2C220-OC 1.03502+00 6.2642D-01 1.45770-01 6.82660-02

9.2745D-01 -4.5415D00 -1 .04110+00 9.8231D-02 -6.6371D-01 -6.98760-02

5.6379D-01 4.53720+00 -1.13220+00 3.2531D-02 7.6248D-01 -7.41580-02
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Table G -3 Feeiboic gains for cz 30, (:45*
nd 4 correspong positions in

the other 3 quadrants
IL

-3.6866D+00 1.0323D+00 1.03810+00 -5.2884D-01 1 .1098D-01 6.9478D-02

3.7028D+00 1.1766D+00 1.04800+00 6.3000D-01 1 .41530-01 6.9113D-02

9.27020-01 -4.4483D+00 -1.01310+00 9.91820-02 -6.5223D-01 -6.8077D-02

5.69050-01 4.4091D+00 -1.11800+00 3.3458D-02 7.44560-01 -7.3297D-02

-3 .flO8 CO -1.15240+CO 1.05070 00 -5.4407D-01 -1 .25120-01 7.0484D-02

3.6138D+C0 -4.72C0D-Cl 1 .00910+C0 6.24050-01 -7.0876D-02 6.66320-02

-1 .25740-01 -4.1834:)400 -1.1682D+00 -2.1993D-02 -7.0808D-01 -7.5408D-02

1.46180+00 4.65b8D+00 -9.91540-01 1.18710-01 7.0842D-Cl -6.7917D-02

I
-3.7028D*C0 -l.1766D+CO 1.0480D0+0 -6.300CD-)1 -1 .4153D-01 6.9113D-02

3.ES66D+00 -l.03230+:C 1.038;0+JO 5.29840-01 -1.10980-01 6.9478D-02

-5.69C6Z-Cl -4.4 91D+C0 -1 .116CD.00 -3.3459D-C2 -7.44550-Cl -7.3297D-02

-9.27010-01 4.4483D+00 -1 .0131000 -9.9182D-02 6.5223D-01 -6.80770-02

IL
-3.62380+00 4.7528D-01 1.00840+00 -6.23930-01 7.11270-C2 6.6653D-02

3.8721D+00 1.15040+00 1.05120+00 5.4358D-01 1.2490D-01 7.0466D-02

-1.44440+00 -4.65860+00 -9.9158-01 -1.18300-01 -7.08420-01 -6.79140-02

1.39260-Cl 4.18380+00 -1.1683D+00 2.2027D-02 7.08140-01 -7.5407D-02



Chapter 7. Conclusions

7.1 Summary

In this thesis, a mathematical model describing the dynamics of the tendon arm system has been

de~cloped. From this, we obtained a reduced-order model of the system and applied the Minimum

Principle and the conjugate gradient method to obtain the time-optimal solutin. It "as found that tie

optimal solution is not bang-bang but that it contains singular arcs. But it ,vas also found that these

singular arcs can be approximated \cry well b% straight line segments, this approximated control is then

utilized to form part of the o\ crall control scheme.

The open-loop tendon arm system was found to be unstable, and hence to maintain the system

at any state, closed-loop feedback control is required. The feedback law was designed using the linear

regulator design procedure, linearizing the nonlinear dynamics about the final state and the nominal

control required to keep the system there.

. two control schemes are combined with the first phase being open-loop time-optimal control,

bringing the system from its initial state to a waypoint in the vicinity of the final state, the second phase

then employs the closed-loop control law to bring the system to the final state and to maintain it there.

It was intended initially to implement the overall control scheme on the actual physical system, but

due to unforeseen circumstances, this was not possible, instead, digital simulations of the system with the

control scheme implemented were done.

7.2 Areas for further work

There are a few directions that we can go from here:

1. Implement the control scheme on the actual physical system - this is the most natural extension to

the present work. Iiowever, before this can be done, there are a few problems to be taken care of:
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a. The control vector of our problem is fomnulatcd in tcrms of inpUl currents to the motors. The

dri\ers for the tendon arm motors, howexcr, are *oltagc amplifiers, hence A c ha\ce to refornu-

late and solhe our problem in terms of oltage inputs. This can be easily done howeer, and the

wa to do it is sho, ni in Appendix F.

b. The linear regulator design assumes full state fcedback. For the tendon arm , vc ha\c only angle

measurements but not \e!ocity measurements, we need to find some means of constructing

the full state (the simplest wa,, of course, is to use backv-ard differencing of the angles to

approximate the velocity terms).

c. In th, simulation of the control scheme, a %ery coarse grid is utilized to partition the state space.

In actual implementation, a finer grid has to be used, and the problems of how many grid

points to use and where to place them have to be considered.

2. Investigate other means of simplifying the model - die biggest disadvantage of die present control

scheme is that the third degree-of-freedom , namely, V), is not being controlled during the first phase

of movement, this is due to the approach employed in simplifying the system equation. It was found

that the coupling between 0 and 0 is not very strong, thus it may be possible to simplif, the system

equations while retaining the full order dynamics.

3. The motivation of using time-optimal control initially is because of its bang-bang solution nature (i.e.

in the absence of singularity). It would be interesting to formulate the time-optimal control problem

as one having a discrete control set constraint, i.e.,

u o(t) C (0, u,,z)

and find out what the form of the optimal solution is. It should also be interesting to formulate the

time-optimal problem based on the full order model and solve it, if possible, to see whether it is

bang- bang.

4. In our control scheme, we have utilited the measurements of die angles 0, 0, and 0 but not die four U
,1

F . .. _
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mlotor shaift angles. I n% estigatc other control strategies dhal will lake advantage of die availabil i Iy (if

all seven anglcs.
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Appendix A. Deriing the equations of motion of the system when either pair of

tedons is completely unwrapped from the arm

)uc to the way the four tendons are wrapped around ie arm, at any one .imc it is possible for only

one pair to be completely unwrapped. Ifence thcrc are three different sets ol equations describing the

motion of the system depending on the values of w + X and w' + ' (refer to figures 2-7(a) and 2-8(a) for

the definitions of w, X, w', ', where '?, is now the point at which a tangent from P, touches the arm, all

projected onto the x' - y' plane).

The three cases correspond to:

1. to + X < 31r/4 and w' + 'N' < 37r/4, both pair of tendons arc properly wrapped on the arm, this is

the normal mode of operation.

2. w + X > 3ir/4 and w' + ' < 37r/4, the first pair, corresponding to tendons I and 2, is completely

unwrapped, whereas the second pair remains wrapped.

3. w + X < 37r/4 and w' + ?V > 37r/4, the first pair remains wrapped, whereas the second pair is

completely unwrapped.

The equations of motion corresponding to case 1. have been developed in Chapter 2: those of the last t o

cases %ill be developed in this Appendix.

A.1 lendons I and 2 arc comnpltely unisrapped

When w + X > 37r/l, "lhcre w and X are still being defined by equations (2.7) and ( !), !endons I

and 2 are completely unwrapped, the situation is shown in figure A-1.

The directions of F, and F2 (the tensions in tendons 1 & 2) are now given by Qi P and Q,'ll

respeclively, and cquario (2.12)-(2.13). (2.17)-(2. IX) are modified to
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Figure A-1. Schematic diagram showing the arn and tendons I & 2(projected onto the x' - y'

plane) when w + X > 31/4.

L1 =L1 =QPI = (acos9sinoi 1-p)2 +(acos cos)+ P)2 +(b+asing)2]

[2ab sin O + a2 + b% 4-p 2 + i/pacos P(cos - sin b) (A. 1)

L2 12 Q2P [(= a cos 0 i n i + L)2 + (-a cos 0cos tP - 12 +( in0- b)2]

[-2ab sin 0 + a2 + 2 + p2 + v/2pa cosO(cos t - sin V) (A.2)

Equation (2.35) now becomes:

Resultant torque acting on the arm about point 0

=0 1 X P1 +O 2 X P2 +0R?3 xP£+0R?4 X! 4+6G X( figF, F2 .Q 0 RP

,- OQ x Q F + X Q P2 + ' Oh3 X R;P3

= Q1P, P [Q2P21 FR3P

+ F O x RORP, + Rgd, X dD
1R4P41

= iT, + jT 2 + kT3  
(A.3)

where

I-|
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T, - -psn 0- ab cosO cos + f I p i bcs o
L, V2-~ L2a 1

+ F-[pssin)cosOin(w' + X)-zjo(cos4)sinO - sinesin4)costp)]

+ 4- [pa sin 4)co 0bin(w' + ) +)±z4 (coso)sin 4 - sine sin 4)cost)

+ mgd(sin 0 sin 0 4- cos 0 sin 0cos tP) (A. 4)

T2 L, si n + ab cos 0si nl + Li2 IpasinO - abcos~sin~'

+ E3 ps sin 4) cos 0cos(w' + ')-zaa(cos 0 cos a/+ sin 0 sin 0 si n 9P)]

+[ n-Hpssin cos 0cos(w' + )~)+ z4s(cos 0 cos ip + sin 0sin 0 si n~

± mgd(sin 0 cosi- cos 0 sin 0sin t) (A. 5)

T 3  f(-+±)I a cos ±5ifl+ si

+ F3+ jF) s8sin 4sin~cos(X' + is) - cos4)sin(X' + p')J (A-6)

In equations (A.4>-A.6), L, and L2 are as defined in equations (A.1) -(A.2), the others are defined as in

equations (2.19)-2.32).

A.2 Tendons 2 and 4 arc completely unwrapped

Following the same procedure as in section A.I. when w' + V > 3x/4, the directions of F3 and F4

will he given by QjP3 and QP, respectively, and
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13 =j Q3P3  [ (-s cos 0cos~ s sinrisin 0sin ip - 12

2
+ (s cos 0sin i - s sin 0sin 0cos 0 I -a)2

+4 (-s sin 0cos 0 -

=I12 _+ t 2 ±+P2V 2±p cos O(cos 0 + in 0)

+ -/~ps sin Osin O(sin io - cos V) + 2st sin cosOli (A. 7)

L4  14 Q QP 4 = [(s cos 0cos o+ ssi n 0si n i n 0+ I-p 2

+ (-s cososin V)+ ssin 0sin 0cos - IP

+1- (s sin 0cosG - t2
= [a8 +t2+ p2 + V~pscos O(co8st) + sin 10)

+ V2pasinosin9(sink- coitp) - 2stinocosG1i (A.8)

T, FI-pasin~cos(w + X) - ziacosacost/'J + F2I-asn0csw+ X) +I z2~CO COs# co

+ -3[I-psin OcosO - t8(cosoin 10 - sin Osingcos )]
L3 V2

+ F L~I pa sin Ocose + ts(cososin ip - sin OsinO coos'P)1

+ mgd(sin 0sin tp + cos 0 in 0cooi (A.9)

T2 =F 11 *pain*in+ X)+z ej'P1n~ + f2jai~i~ + )-z~acooainPj

+ 3 psn a- ta(cos~cosOP+ sin~uan~in'P)]

+ Lf-'-pasinocos9 acscs +snsnsn)

+ mgd(sin 0coo 0 - cooa0sin 0sin'P (A. 10)

T3 Cl+ )pa cos ui n~

+ W3+ Ll)i-pacos4(sinoP- cos'P) - sin~sin(cosok sin o)] (A. 11)
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Note: In equdtions (A.9)-(A.l 1), L3 and L, arc as defined in equations (A.7) and (A.8), the others are as

defined in equations (2.7)-2.18).

A.3 Equations of Motion

The equations of motion for the two cases of unwrapped tendons can be derived following the proce-

dure in subsection 2.2.4, and instead of using equations (2.36H2.38) for the (xpressions for T1, T2, and

T3, equations (A.4}-(A.6) or equations (A.9)-(A.11) are used depending on which pair of tendons are

unwrapped. The full detail of the equations corresponding to equation (2.48) is given in Appendix B.



Appendix B. Equations of motion for the full order model

B% substituting expressions for TI, T.2, T and equations (2.40)-(2.45) into equations (2.39), the three

equations become,

0[J Cos V!, - Jil(CI 1 0-11-+C,2 - - C3a1 ct1 a-c 14)]

Ji. , 0 2  013 a14]
+ Jcos0sin, --(c, I g C 2 -+ C3 + C,., )

i ll. ( C-' 1l + 2a-['-Cl a l + 14 4' )]

:II ll + C1212 + C13 3 + CHI41 + C5 + j . "c-I C12 a2 " C13 -'3 C4a1

B,,, 0r2 02 603  0d41

C+ all C2t a12 + 013 13 + 0C14 L9L9(9
* i B. +C12 +C3q-+ C2 1 2 4012(9 9 0 L141

. 04r , + 13 + C 4 1
L92rC _j +1CI.aJ +,]

T221922 92 L9 2 213

•2[J]3 cOSe¢OS 4± J 01 0212 0213 + 0214 1

+ (,-J + 3 sn0Cos 0Cos + (CI l- + C,-- + C 1 , 2]

1r2(I02 L90 2C3 C4j )J

C12! + CI + +

* 2 V J3)sin021 i0213. C !I + 0212 I3(23 I4!1

1 514* +2 . ..... ... I - I Os + +C a212 +C 213  +C 14 t _)
1-2 3  r2 " 0ft~9 WO]

_ _ 921 013 214 (B1
+2 4'[--js4'G in 0 21 02c 12 CI3 ±+ C1 4
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j[isin v, - Jj2.(C 2 16- + C22~ + C2 3q~ + C,21 1 )]j

jll 0 i 012 1 01 1
+[Jcosocoas - - (C2 1 - + C22- + C2 (i+ 2lq-

[Jni, 01~ 012 013 04
(C tI+ C22 + C23 + j2

K 2 N ~ alp0 1 010 0100
K -jC21 II +~ C22b + C2313 + C24 1,11 + C-9 + [C qj+ C22q- * ±2(i + 24 (1
r r2[

2 L (90

+ IC21III +CU--0Y + C23q3 + C24 %

,Brn01 (02 do3 004
C1+C2 2 2- +±C2.lq- + C24! 4

2 1 V (0 *0v ap
C2 j(t 4 C 2 2 -2 C23t- C24 1

+ 2 J J) in0 os0 intP+ .. (C2,q'- + C22t- + C23 3+C2t4

IJ~i~ossP r2 C92 8212 02 0

2 4.~i~ +82+ + 924]

921+C22&2 C 2 3 2 C4

T2 .010 N21 8213 &p24

± (- Jj)sin~coso+ ?1 2j 1c- 2  3 1ic4---- )

±2~b2Jjcs~sivVn (C2 , + C22 t + C2 3 492 ,

20[1JJ1. +9j 22 81 C2 214+ 2 cos0i t + (C2 1 C22~ -! - +~X C23afo N(13.2)
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-i ' c 3 ,I + +C32-+ C33 + CJ]
[ 6 '" 60+t, 60~a M" a _'

+ j in 0 - ?1+ 9+ c0 1 +

+ - Cj I l c + C J2I2d + C330I3+ c.2 1(W'1r a,,,r a, 00a a a,.
K I-111 + 2 +C 3.2 J + af,] + I3 + C34

r ,2 I m.S a, 8aI

+8 " 212 a213 a 214

r .31 + C32 7 + C3 3j + C34. 1

J,1 [ (921 1 021 8213 (214

+3 2 C0;,o 2 + 6,12  + C332 + C34

.J1,,3211 2 21 4 9 ,

+ ~ ~ 2o' +O [3JjcosG + 2 ±c4' C4c-)

2 "-7 [ +t (902 a02 t4
2 j! [3191 al ± 8 (21 + 3,(91.

+ C 2~ q2-)2P N2P a0

I2 [82 122  C 814 (B.314

In the above three equations, the values of ci~, L1,, i =1, 2, 3, j = ,..., 4, will depend on thevalues ofw + X and w' + t- ' as defined by equations (2.7)-(2.8) and (2.19(2.22).

Forw+X< 3w/4,

2 -pansin (w + X) azoacos mo]9/L0

r2 &Wa~nco~ V ) + a09cosv1J/

+ = pa in ( -C2 + C.33 i + C3 /L4
c (I=Ipa sin Oain(w + ) - a CoOOsin tP]LI2

c:1 = pacosO sin X/L,

CJ2 = pacosOsin X/L2
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z1, LI, 11. z2 , L2 , 2 are as gi\en by equations (2.11) -(2.13) and (2.16)-(2.18).

Forw + X > 3w/4,

c, - - sin 0 - abcosOcosg})/Lj

ci,=[-pasin0 + abcos0cogb]/L 2

C1= -I pasinO + abcosOsin tp]L

C22= - pa sin 8 - a cosO sin u]/L2v/2

c,= - pa co O(cos , + sin O)/LI

C3 2 = -pa cosO(cos p + sin ,/)IL 2

L, 1. L2,12 are as given by equations (A.1) and (A.2).

For u + N' < 37/4,

C13 = [ps sin 0 cosO sin(w' + V') - zjs(cos 0 sin tP - sin 0 sin 0 cos p)]/L 3

C4 = [ps sin 0 cosO sin(w' + V ') + z4s(cososin V - sin Osin 0 cosip)]/L 4

C23 = I-ps sin 0 cosO cos(' + X') - zs(cosocost, - sinsin40gin t,)]/L 3

c,24 = f--pssiri OcosOcos(w' + Ak') + zis(cosdcos 0 + singsin OBin b))/L 4

c33 = pSlsin Osin 0 cos(N' +,') - cos 0 sin(X' + I')]/L 3

c: 4= pSasin sin 0 cos(X' + I') - cosgbsin(N' + j')]/L 4

A3, L3, 13, z1, L,. 14 are as defined in equations (2.25)-(2.27) and (2.30)-(2.32).

Ford + V' > 3w/4,
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C13 = p-PssinocosO - st(cososin 0- sinOsin cos)]/L3

C14 = [-ps sin OcosO + st(cososin 0 - sinOsin cos )]/L 4i V2
=23 = I pssin kcosO - st(coso cosok +sin 0sin 4Psin i)1/L3,/2

C24 = [-pssin cosO + st(cos€cosO' + sinOsinosin .,)]/L 4

1
C33 = -ps[cos(sin - cos ¢) - sin€sinO(cosp + oi&n V)]/L 3

= - ps[coso(sin o - cos) -sinosinO(cos -+ sin O))/L 4

LI, 13, L.1, I., are as defined in equations (A.7) and (A.8).

For all cases,
c15 = mgd(sin 0 sin i + cos 0 sin 0 cos V)

C2 5 = mgd(sin 0 cos V - cos 6 sin 0 sin )

Equations (B.1)--(B.3) are of the form,

4

hI-+h,2 "+ -hOi = g'(O6,d+,, E q.i2 I i 1,2,3 (B.4)
j=l

where the hij's, and q,,'s are functions of 0,4,/.

Written in component form,

'll"

IL~I h2 J2 g 'k,, 0p, O, 'o) + q'21 q22 q723 q24 (B5

h3 j h 32  h 33J .[ k Lg ( , , , , ¢ , 'k )J L 1 q32 q33 q 34 . J
Define

[hil h12 hj3 ]

H =h h22 h2

1h31 h32 h33.
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I hen from equation (B.5),

Defi ne

u=[ , 12 13 1 3

2:4

.12

-- 1

Iff6) = aJ 6-vecto

Define

A

0

0

0
Box =) -... a 6X4matix

b5

TIhen equation (B.6) can be written as

which is equation (2.48).



\ppendices C- F haw e 'cn excluded [rain the Memo %ersion of th is thesis.



Appendix F. Using %oltage instead of current inputs

The electrical equation of rnotor i is given by,

V, = L V, + RI, + KE-ii (F.1)

where L,,. R. K: are thc im s inductance, resistance and EMF constant respectively, and j, is the

angular speed of the motor.

For the pancake t pe of motor that we are using.

La 0

and since in S.I. units, the EMt: constant and the torque constant are equal, we will use the symbol K for

both of them.

Hence equation (F.1) can be written as

or
R Kt, =k v,- -f~y+(F.2)

From equation (2.42), the dynamic equation of motor i is given by,

J, , + B,,,j, + Fir = KIA (F.3)

Substituting equation (F.2) into (F.3), we obtain,

K(2 K .4
Jm, + (Br + K2i +Fir = v(.4)

which is of the same structure as equation (F.3) except that (Bin + K 2/R) is substituted for B,,, and KIR

is substituted for K.

Hence all the equations and programs that have been developed for current inputs can be applied to

the case of voltage inputs by changing the values of the damping constant B,,, and torque constant K of

the motor.



Appendix G. Values of the parameters used in the simulation runs

G.1 Arm Parameters

a 0.4064 m refer to figure 2-6

b 0.4064 m refer to figure 2-6

d 0.117 m refer to figrre 2-6

8 0.2032 m refer to figure 2-6

t 0.2032 rn refer to figt,re 2-6

P 0.02223 m radius of the cylindrical rod

m 1.581kg mass of arm

J 0.0906 kg M 2  momemt of inertia of am about X - X and Y - Y axes

J3 0.000407 kg m2 moment of inertia of arm about Z - Z axis

G.2 Motor Parameters (PMI motor type UI2M4)

0.016 m radius of motor shaft

K 0.11 N rn/A torque constant

J. 0.00016 kg m2  moment of inertia of motor shaft

Bm 0.000135 N m/ad 8-1 damping constant

The rated current of the motor is 4.4 A.

... . . . I Il I li il ... . .. .. . .. . .p. . ... rll 
,

... . . .a . I / lilI ~ l . . . .,a~ md F, . . . a
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